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Abstract
	  
In the first 20 years of the market economy in Estonia, the public school market was 
decentralised in Tallinn. Recently, a hybrid market was established by centralising the 
school allocations to comprehensive schools and also allowing some selective schools to 
autonomously select students for some groups. We contribute to mechanism design literature 
by studying the centralised clearing-house used in Tallinn – the Tallinn mechanism. By 
using genetic algorithms, we show that, the Tallinn mechanism incentivises families to 
manipulate their preference revelation by reporting only a few schools and not always from 
the top of their preference list. Also we see that the expected utility in the Tallinn mechanism 
is higher compared to the widely used Deferred-Acceptance mechanism, although the 
number of unassigned students is also higher.
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1. Introduction

In recent years, economists have gained significant experience (and fame) in practical 
market design. The applications of the theoretical principles of market design demonstrate 
that institutions matter at a level of details that economists have not often had to deal with.  
Much of this research is based on the seminal papers by Gale and Shapley (1962) that were 
initially used for entry-level job markets, such as the National-Resident Matching Program 
and others (Roth, 2008). The core of the curriculum is to apply a central mechanism that 
collects information from a market participant as ordered preferences and finds the 
allocation that has some merits. This approach has recently been very fruitful in many real-
life resource allocation problems in public good provision (Milgrom, 2000; McAfee, Preston 
and Mcmillan, 1996) and also high school (college) allocation problems (Abdulkadiroğlu et 
al., 2005a, b; Abdulkadiroğlu and Sönmez, 2003; Balinski and Sönmez, 1999; Romero-
Medina, 1998). Moreover, significant research has recently been carried out to explore the 
allocation of school seats to students in primary (e.g. Abdulkadiroğlu et al., 2006, 2011; Dur 
et al., 2013), secondary (Dur et al., 2013) as well as upper-secondary schools (Abdulkadiroğlu 
et al., 2015, 2009). In this agenda, two-sided matching markets are used as in the “marriage 
problem” to solve “the college admission problem” and some striking results concerning 
agent incentive schemes have recently been obtained (Abdulkadiroğlu et al., 2011; 
Abdulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013, 2008; Erdil and Kumano, 
2013; Erdil and Ergin, 2008).  In the case of two-sided markets it has been shown (Roth, 
1982) that only a limited number of stable matching procedures exists to form a dominant 
strategy for families to reveal their true ordered preferences.  
	 The existing matching mechanism literature is growing, not only in terms of new cases 
and designs, but also by adding new problematic design areas; that is, encouraging diversity 
with the use of quotas or priority classes that in many cases can fail to enforce social justice 
(Dur et al., 2013; Kominers and Sönmez, 2013; Fragiadakis and Troyan, 2013; Erdil and 
Kumano, 2013). However, to the best of our knowledge, there is no literature dealing with 
post-communist school allocation mechanisms. Our experience indicates that in the Soviet 
era, mechanisms were widely in use in many spheres; for example, the allocation of university 
graduates or university choice. One common characteristic of the communist mechanisms 
was the school-proposing nature while the submitted preferences were marginally 
considered. The latter has not diminished its prevalence – many applications in two sided 
markets are still initiated by the “stronger side” and have no welfare considerations. 
	 We are contributing to the matching research agenda by studying the Tallinn school 
choice mechanism (Tallinn mechanism hereinafter). Notably, Soviet-style central matching 
was abandoned in the Tallinn school market during the liberal reforms after the 90s and 
substituted by decentralised or semi-centralised designs. Over the last few years, central 
matching has been reintroduced in the Tallinn school market for allocating children to 
primary schools. Through trial and error, local policy-designers established the Tallinn 
mechanism as a central marketplace in 2012. This mechanism has specific characteristics in 
addition to the school proposing nature. First, students are prioritised according to distance 
from the school. Second, families can submit three unordered preferences. Third, the 
mechanism uses immediate acceptance (Boston). 
	 As with the shortcomings of the Boston mechanism, which has created a rule of thumb 
for submitting the preferences strategically (Ergin and Sönmez, 2006; Pathak and Sönmez, 
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2008; Pathak and Shi, 2013; Abdulkadiroğlu et al., 2011), we show there are similar rules of 
thumb for manipulation under the Tallinn mechanism. In the Boston mechanism there are 
different levels of sophistication among families who participate in the mechanism; that is, 
one strategy was to avoid ranking two over-demanded schools as their top choices or an 
unsubscribed school or popular school was recommended to be put as the first choice plus a 
“safe” second choice. Hence, as Pathak and Sönmez (2008) showed that the Boston 
mechanism is a coordination game among sophisticated families. Thereby “levelling the 
playing field” by diminishing the harm done to families, who do not strategise or do not 
strategise well, is emphasised as a condition for designing the new mechanism. Similarly, we 
introduce the Tallinn mechanism as a sophisticated game. We ask how many preferences it 
is rational to report under such a mechanism and whether families reveal their true top 
preferences or manipulate in both dimensions – report only a limited number of preferences 
which might not be at the top of their preference lists. In addition, we ask whether this 
behaviour is dependent on their preference structure – the functional form of their estimated 
cardinal utility function. The latter allows us to show whether the strategy of revealing 
preferences is dependent on the relative cardinal measure of utility from first, second etc. 
preference – which can be considered a measure of marginal utility. Moreover, we are 
interested in social inefficiencies defined as the difference between individual allocated 
ranks and unassigned families under the Tallinn mechanism compared to the Deferred-
Acceptance mechanism.
	 Our research design is based on computational experiments. For descriptive analysis, we 
use data from the centralised database, e-school. The e-school database is an electronic 
register, where approximately 4000 7-year-old children with a known home address annually 
list their school preferences. The rest of our data is synthetic. Our research strategy is the 
following. After descriptive stylised facts, we use genetic algorithms to find the best strategies 
for revealing the preferences of families. We illustrate the results by indicating the extreme 
cases of utility function – utility over preferences might be uniform or extreme; in other 
words, might all be concentrated on the first preference. We use genetic algorithms to find 
good strategies for maximising utility for the families. Family agents optimise strategies by 
observing their allocation and the obtained utility. 
	 We continue as follows. First, we describe the broader Tallinn school market, then the 
concrete mechanism used by the Tallinn education administration – the Tallinn mechanism. 
In section 3, we describe the preference generation, the utility function and genetic 
algorithms. In section 4, we describe the results of the parental strategies and the obtained 
allocation after revealing what and how much to report to the central marketplace. Finally, 
we conclude by highlighting the policy implications for Estonia and for other decentralised 
and centralised markets.

2. Background: Tallinn School Market

Over the years, some schools in Tallinn have become over-subscribed. These selective 
schools have inter-district admissions to primary school and have all introduced aptitude 
entrance tests (hereinafter exam schools). For intra-district comprehensive schools 
(hereinafter regular schools), the tradition has been a central or semi-central catchment-
based allocation based on an application (single preference or multiple preferences) from the 



VESKI • PÕDER

9

REB 2016
Vol. 8, No. 1

family. Rejected offers were not treated centrally – each school and student should find the 
match independently.
	 The admission process for the exam schools takes place between January and March. We 
note that it has been shifting from March (in 2012) to February (in 2013) and even to January 
(in 2014). The second stage (in the Tallinn mechanism) in regular schools starts on 1st of March 
with the submission of an electronic application to the e-school register. Central but manual 
entries are made by 25 May. By 10 June, parents must either accept or decline offers. There is a 
later decentralised round of applications for additional vacant positions after 15 June.
	 To make the entire school choice procedure more transparent, we highlight the following steps:
1.	 Students are assigned to exam schools based on the proposing Deferred-Acceptance (DA) 

mechanism of decentralised schools
2.	 The remaining students are centrally assigned to regular schools based on the Tallinn 

mechanism
3.	 Unassigned students are assigned to the closest schools potentially rejecting an already 

assigned student. Some students might be assigned to a school they did not apply to. This 
continues until all students are assigned.

4.	 Students can reject their assigned position. Once the rejection/acceptance deadline has 
passed, schools can autonomously accept students for any available positions.

	 Therefore, the hybrid structure of the Tallinn school market consists of exam schools 
(decentralised matching), the Tallinn mechanism (central matching) and the final 
decentralised round. We are only interested in the Tallinn mechanism. 

2.1. Tallinn Mechanism

The Tallinn mechanism governs only the central admission procedure to all municipal 
primary schools. These schools rely on the following procedural steps. First, families submit 
an application where they list up to three schools. Then the seats are allocated based on the 
following procedure:

0. 	 Look at the schools in a random order. Each student is only considered for the school to 
which the family applied.

1.	 Allocate students to the first school for which they have high (siblings and distance- based) 
priority until the quota is full.

2.	 Allocate students that were not allocated before to the second school for which they have 
high priority until the quota is full.

	 ...
k. 	 Allocate students that were not allocated before to the k-th school for which they have high 

priority until the quota is full.

	 It is important to stress that regular school applications are limited to three options; in 
other words, the parent has the right to list three schools, but these are not considered in any 
particular order. The application can also contain information about siblings and the 
school(s) they attend. Centralised school priorities are considered based on the student’s 
distance from the school (in metres) from the officially registered address. 
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Table 1: Number of Reported Preferences under the Tallinn Mechanism

# of prefs 2011 2012 2013

1 52 % 74 % 76 %

2 18 % 15 % 14 %

3 11 % 11 % 9 %

> 3 18 % 0 % 0 %

Mean 2.2 1.4 1.3

Source: Authors’ calculation

	 We use descriptive statistics to illustrate the micro-mechanism in Tallinn over three 
consecutive years – from 2011 to 2013. In 2011, the market was decentralised. However, 
applications were centrally collected without any upper limit on the submitted preferences. 
The Tallinn mechanism has been in use since 2012, limiting the amount of unordered 
preferences submitted to three (see Table 1). 
	 This stylised fact illustrates the tendency to report a limited list. Most families submit 
only a single preference. However, there is no clear indication that parents do not manipulate 
as in the Boston mechanism and decide to reveal strategically lower preferences or “safe” 
choices. Therefore, we are interested in whether it is rational to report less than three 
preferences and what the rationality is of reporting truthful preferences.

2.2. Example of Deciding What to Report

We illustrate the choice set for parents using a simple extensive form game (Figure 1). In 
such a game, the parents in the starting node have three strategies – to report either 1, 2 or 3 
preferences. In the following subgames, the designer randomly allocates the student to the 
reported school or an outside option. In the final nodes, the utilities are reported by 
indicating the preference – 1 stands for first preference and Ø indicates the utility of the 
outside option. In the illustration below, we assume risk neutral agents.

Figure 1: Extensive Form Reporting Game

Source: Authors’ illustration

	 Assume that we have two utility functions, where k indicates a position in a preference list:
• u1(k) = 0.358 − 0.025(k − 1)
• u2(k) = 0.658 − 0.325(k − 1)

                                                               r

                      1                                      2                                                    3

                  .5        .5                              .33        .33     .33                                   .25          .25       25     .25

             1             Ø               1             2             Ø              1             2             3             Ø
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Then we obtain cardinal utilities for k ∈ {1, 2, 3} as in Table 2.

Table 2: Utilities

k u1(k) u2(k)

1 0.358 0.658

2 0.333 0.333

3 0.309 0.009

Source: Authors’ calculation

Assuming the uniform probabilities of being unassigned or assigned to one of their 
preferences, as in Figure 1, we can compute the expected utilities for both utility functions 
and all cases of reported preferences. Notably, we do not take into account the demand for a 
school or the overall availability of places. Moreover, it is preferable to always report schools 
higher in the preference list, so we do not investigate cases where, for instance, only the 
second or third choice is reported, because the expected utility will definitely be lower. This 
might not be the case when the probabilities of being assigned to a particular school are not 
uniform.
	 We see that the probability of being left unassigned decreases as more preferences are 
reported, but so does the probability of getting a place in the most preferred school. The 
expected utilities for u1(k) are:
•	 for reporting one school E1[u1(k)] =1–

2
(0.358 + 0) = .179

•	 for reporting the first two schools E2[u1(k)] =1–
3
(0.358 + 0.333) = .230

•	 for reporting the first three schools E3[u1(k)] =1–
4
(0.358 + 0.333 + 0.309) = .250

	 We see that reporting all three preferences maximised utility. With utility function u2(k) 
the expected utilities are:
•	 for reporting one school E1[u1(k)] =1–

2
(0.658 + 0) = .329

•	 for reporting the first two schools E2[u1(k)] =1–
3(0.658 + 0.333) = .330

•	 for reporting the first three schools E3[u1(k)] =1–
4
(0.658 + 0.333 + 0.009) = .250

	 As Figure 1 illustrates the game, where under the expected utility maximisation 
assumptions, parents obtain higher utility by reporting only one or two schools with u2(k).
	 We are interested in finding near-optimal strategies in large markets, where agents might 
have similar preferences or there are popular and over demanded schools. Additionally, the 
revealed demand also depends on the strategies of the agents and the revelation strategies 
depend on the revealed demand.

2.3. Deferred-Acceptance Mechanism

A widely used mechanism for school choice is the Deferred-Acceptance (DA) mechanism 
(Abdulkadiroğlu and Sönmez, 2003; Pathak and Sönmez, 2013). First introduced by Gale 
and Shapley (1962) it has been confirmed to be useful in many applications in matching 
residents to hospitals (Mullin and Stalnaker, 1952; Roth, 1984) and other labour market 
applications (e.g. Roth, 2008), students to schools (Abdulkadiroğlu et al., 2005a; Pathak and 



12

VESKI • PÕDER
REB 2016 

Vol. 8, No. 1

Sönmez, 2013) and colleges (Abdulkadiroğlu et al., 2005a; Pathak and Sönmez, 2013) and 
probably more.
	 The DA mechanism has become so popular mainly due to two good properties it has: 
strategy-proofness and no justified envy (e.g. Abdulkadiroğlu and Sönmez, 2003). Strategy-
proof mechanisms always make it safe and in the families’ best interests to report their true 
preferences. In an allocation with no justified envy, families never have an option to a more 
preferred school, because another family with a higher priority has already been assigned to 
that school. When there is no justified envy, the allocation is also called stable. While there 
can be multiple stable matchings, we usually aim to obtain student-optimal stable-matching 
(e.g. Abdulkadiroğlu and Sönmez, 2003), as that is the only way to guarantee strategy-
proofness. While there are other strategy-proof mechanisms, such as the Top Trading Cycles, 
this does not ensure that the final allocation is stable (e.g. Abdulkadiroğlu and Sönmez, 2003).
	 In general the Deferred-Acceptance works as follows:
1.	 All students are tentatively assigned to their first preference.  If schools have more 

students assigned than places, they reject some students with lower priority.
2.	 All rejected students are tentatively assigned to their second preference. Again if schools 

have more students assigned than places, they reject some students with lower priority. 
Note that the school may reject students tentatively assigned in the previous round, if 
they have a lower priority than some new applicants.

	 ...
k. 	 In general, rejected students are tentatively assigned to their next preference. If a school 

has more students assigned than places then students with lower priority are rejected. 
The process continues until all students are assigned a place, or all preferences have been 
explored.

	 Due to its good properties, the DA is a good “ideal” model for our comparative welfare 
analysis.  It allows us to show how final allocations differ under the Tallinn and DA mechanism.

3. Model

3.1. Environment

We are interested in understanding strategies in multiple environments. We characterise the 
environment with societal parameters (Tables 3 and 4) and the parameters of an individual. 
Societal parameters describe the number of schools, the number of exam (popular) schools, 
the correlation between ordered preferences, and so on. Exam schools exist because they are 
popular overall, so we consider them as a metaphor for globally popular schools. Moreover, 
in Tallinn, these schools are still allocated the most groups through the Tallinn mechanism.
	 We fix the number of schools, the number of places in a school and the number of 
students for all our experiments (Table 3). In addition, the maximum number of ordered 
preferences for each agent is fixed. We model families as agents. They are willing to apply to 
or can rank up to 15 schools at the most, although the utility from lower preferences is 
relatively small. This is partly driven by case specificities, as 15 was the maximum number 
of schools listed in the decentralised market in Tallinn in 2011. From those 15 ordered 
preferences, agents have to select three to report in the Tallinn mechanism.
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	 We investigate societies, where agents can have random or spatially correlated preferences – 
the latter indicates that schools nearby are more desired (Table 4). We also look at the effect 
of having the same set of popular schools – exam schools. In these societies, all agents would 
prefer exam schools, even if they are further away than the nearest regular schools. In the 
case of spatial preferences among exam schools, agents would still prefer schools nearby, and 
no other criteria matters. In each computational experiment, all these parameters are fixed. 
The priorities for schools are always spatial, distance based. Agents closer to a school have a 
higher priority in that school.

Table 3: Fixed Societal Parameters 

Parameter Description

k = 15 Length of preference lists 

n = 3000 Number of family agents 

m = 50 Number of schools

qj = 60 Number of places in school j

                       
Table 4: Variable Societal Parameters

Parameter Description

c ∈ 0,1 Spatial  correlation  in  preferences

me ∈ {0, 10} Number of exam schools

	
For each agent looking for a place at the school, we only have one parameter: the functional 
form of the utility function described by the parameter (α). The latter indicates the slope of 
the utility function. In each experiment, our agents are heterogeneous, so they have different 
values for the slope of the utility function.

3.2. Preferences

We assume that agents have strict preferences for schools. In the simplest case, preferences are 
random; in other words, each agent has a totally idiosyncratic preference ordering. In general, 
we can think of more structured preferences in a society, parametrised by the length of the 
preference list (k) and the correlation between the preference lists (c). In our experiments, the 
preference lists are limited to k = 15. Correlated preferences stem from a spatial preference 
ordering, and can also be considered 2D-Euclidean preferences (Bogomolnaia and Laslier, 
2007). The degree of correlation is also the same for all agents, but the preference ordering is 
not necessarily identical when comparing two agents due to the spatial nature of preferences.
	 We generate the preferences using the Algorithm 1 with parameters k, c and m. This 
algorithm is a modified version of a random permutation algorithm (Knuth, 1997, p. 145) to 
generate correlated preferences with parameter c. The algorithm starts with a master list of 
n numbers (agents). Then it iterates the list from beginning to end, each time at position j 
randomly selecting a position q ∈ [j + 1, n] to exchange values with. The correlation parameter 
c illustrates how biased the randomly selected position is; higher values indicate that the 
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exchange position is selected closer to the current position j. With c = 0.0 the selection is 
uniformly probable over all positions, until finally at c = 1 the exchange position is always 
the active position and all the generated lists are exactly the same. There is one global 
ordering of agents for each side of the market that is used for generating correlated 
preferences.

3.3. Utility Function

While agents have a preference ordering for schools, their behaviour might also be influenced 
by the cardinal utility they gain from assignment to the particular preference. A similar 
notion was illustrated by the reporting game in Section 2.2. In order to understand the 
behaviour with different cardinal valuations, we use exponentially declining utility over 
alternatives. When compared to consecutive schools i and i + 1, we assume that u(i+1)––––––

u(i) = 1− α. 
Furthermore, we need to normalise the utility function such that Σk

i = 1u(i) = 1. The resulting 
form of the utility function is in (1), where i ∈ {1, ..., k} is a position in the preference ordering.

Algorithm 1 Correlated permutation

Require: m,k = 15, c ∈ [0,1]
Ensure: p is a permutation of unique numbers
	 p  1, 2, 3, ..., n, j  0
	 while j < k do
		  r  [0.0, 1.0] uniform random number between 0and 1
		  q  [m – (m–j) • r1-c]
		  t    pq, pq  pj, pj  t
		  j    j + 1
	 end while
	 return {p1, p2, ..., pk}

		       α(1–α)i–1

	 u(i) = – –––––––––––                                                                                                                           (1)
                  1 – (1– α)k

	 When α → 0, then cardinal utilities for all alternatives are exactly the same u(i) = 1––k

Ai. 
When α = 1, then all utility is concentrated in the first preference, that is u(1) = 1. In Figure 2, 
we show the utility values using some examples of α.
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Figure 2: Exponential Utility Function

Source: Authors’ illustration

The utility function can be compared to a linear utility function over perfect substitutes u(x1, 
..., xn) = β1x1 + ... + βnxn, where the consumer is allocated at most one good xi. The βi is the 
value of the allocated good xi to the consumer (e.g. Varian, 2006, p. 61). Our utility function 
(1) states the shape of the decline in value βi of the goods to consumers. We assume that 
agents are risk-neutral, i.e. they maximise their expected utility E[u].
	 Using utility ratios u(i+1) ––––––

u(i)  
to measure on preferences is also popular in decision theory, 

Saaty scale, and is supported by some psychological observations (e.g. Franek and Kresta, 
2014, and references therein). Another reason is that differences are greater in geometrically 
declining function than linearly. So the effects we are investigating are more evident.

3.4. Genetic Algorithm Optimisation

We use genetic algorithms to find a near-optimal strategy for reporting in the Tallinn 
mechanism. The genetic algorithms adapt existing strategies to find better ones that would 
result in an increased utility. The result of a genetic algorithm after optimising is a steady 
state (e.g. Riechmann, 2001). While a steady state is also by definition a Nash equilibrium in 
a game, it could simply be one among many in multiple equilibria games. Our experiments 
are carried out with agents, not populations, as each individual might find a better strategy 
in every iteration, but for populations, a certain strategy would remain roughly constant.
	 There has been extensive use of genetic algorithms and programming in finance (e.g. 
Chen, 2002; Chen et al., 2011; Chen and Tai, 2010) and economics in general (e.g. Riechmann, 
2001). Agents learn better trading strategies by observing the market. The main difference 
compared to our model is that agents do not have much to observe about the school market. 
Players do now know either the overall demand for schools or the preferences of other agents 
in the market. The only information source is their own allocation and the utility they gain 
from the market. With genetic algorithms, our approach is to find strategies that would 
maximise the utility of the agents.
	 Here we do not assume that the manner of genetic algorithms is in reality how humans 
learn. We only employ it for computational tractability, as exploring the entire strategy-space 
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for 3,000 agents is resource consuming.  However, there are studies that use a form of genetic 
algorithm as a model for learning (see e.g. Unver, 2001; Roth, 2002; Unver, 2005) and is also 
observed as exhibiting features with human subjects (e.g. Arifovic, 1994, 1996; Duffy, 2006).

Algorithm 2 Simple Genetic Algorithm – single iteration

Require: Α set of agents, u agents utilities
Ensure: Α is a set of agents
	 n  |Α|
	 s    Σα∈ΑUα

	 p  { Uα––s , Aα ∈ Α} {selection probablities}
	 i    0
	 for all r1, r2 ∈ Select (Α, p, n) do
		  {select with probability p, with replacement n pais of strategies}
		  αi  CrossOver(r1, r2) {assign new strategy to agent αi
		  if RandomNumber () < 0.05 then
		            Mutate(αi) 
		  end if
		  i   i +1
	 end for
	 return Α

	 Genetic algorithms have two basic operations for finding an improved strategy (e.g. 
Simon, 2013): mutation and crossover. Mutation slightly tweaks an existing strategy and 
cross-over merges two successful strategies to find a better one. Finally, selection indicates 
an operation that eliminates the least successful strategies. Since agents in our model can 
have various utility functions, as specified by the α parameter, the strategy elimination and 
cross-over operations are contained in the α-population. Additionally, strategies for different 
α values might not be the same.
	 A strategy in the case of the Tallinn mechanism is simply a bit-string. A bit-string is a 
series of 1-s and 0-s, which respectively stand for reported and not reported preference. 
Since we limit our agent’s preferences to k = 15, the length of the bit-string is 15 bits. Since 
the Tallinn mechanism is limited to just three preferences, the bit-string can contain at most 
three bits set to one. For example, a possible strategy for agent i might be ai  = 100110000000000; 
that is, the agents with this strategy would report their first, fourth and fifth preference.
	 We run our genetic algorithms for a fixed (2000) number of steps. In each step, an 
allocation is made based on the Tallinn mechanism and we get the utilities for each agent. 
Then based on the rules of the genetic algorithm the strategies evolve. In Algorithm 2, we 
present a simple genetic algorithm (e.g. Riechmann, 2001; Simon, 2013). It consists of three 
operations: selection, crossover and mutation. The selection operator selects strategies with 
replacement and probability proportional to the gained utility. The cross-over operation 
randomly selects the value from either strategy for each position. Finally, with a small 0.05 
probability we mutate the new strategy.
	 We evaluate four versions of genetic algorithms:simple genetic algorithm; genetic algorithm 
with election; genetic algorithm with stud selection; and genetic algorithm with elitism. The 
last three are slight modifications of the simple genetic algorithm. In the election modification, 
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the agents remember their previous strategy and the corresponding utility. Before the selection 
operation in the next allocation, each agent picks the strategy with a higher utility from the 
previously remembered and the newly evaluated strategies (e.g. Riechmann, 2001). In the stud 
selection, we pick the top 20% of strategies with higher utility and always set one of the 
strategies in the cross-over operator to be in the top 20% (Simon, 2013). In addition, we ignore 
the bottom 10% of strategies. In elitism, we keep the top 20% of strategies fixed and only use 
the remaining strategies in the crossover (Simon, 2013).

Figure 3: Mean Utility

Source: Authors’ calculation

Figures 3 and 4 show the results from the four variations of genetic algorithms. We see that 
the stud selection usually performs the worst, has the lowest utility and highest variation in 
utilities compared to the other variations. If preferences are spatially correlated and there is 
a large number of exam schools (me = 10), we can see that the simple genetic algorithm does 
slightly better with large values of α than with alternatives. For lower values of α, the simple 
model is statistically equivalent to the election and in some cases to elite selection. As the 
simple model does as good as others we further analyse the results from the simple 
optimisation method.

Figure 4: Ratio of Variance and Mean Utility

Source: Authors’ calculation
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4. Results

4.1. Expected Utility Maximising Strategies

The reported results are divided into four cases. In all of the figures illustrating the results, 
in the upper left corner the results with no correlation (random) preferences and no exam 
schools are indicated; in the upper right corner, the results with spatial (2D Euclidean) 
preferences and no exam schools; in the lower left corner, random preferences and ten exam 
schools; and in the lower right corner, correlated preference lists and 10 exam schools. 
Figures 5, 6 and 7 show a plot with the average and the standard deviation over multiple 
experiments. The standard deviation is often small so it is not always visible on the charts.

Figure 5: Reported Strategy Length

Source: Authors’ calculation

Figure 6: Reported Preference by Utility Coefficient α

Source: Authors’ calculation
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Firstly, we are interested in the strategy length – the number of schools to be reported. In 
Figure 5, we show the strategy length by a proportion of the respective α-population. In 
general, it is elucidated that the decay in the utility function is a significant determinant of a 
good strategy. When α ≈ 0.0, it is best to randomly select the number of schools to report 
with roughly uniform probability. When α ≥ 0.4 and there are no exam schools, it would 
almost always be best to report only one school. With random preferences, when α ≈ 0.2, 
there is a phase transition in the number of schools to report, as the variation at this point is 
largest. Therefore, it is really difficult to pick a good strategy for how to report. 
	 General trends show an increase in standard deviation in the strategy length when moving 
from spatial preferences to random preferences, or from having no exam schools to having 10 
exam schools. Spatial preferences are aligned with school priorities, resulting is more predictable 
matches; therefore, the resulting strategies have a lower standard deviation. Standard deviation 
can also be interpreted as the uncertainty of the resulting match, when playing a certain strategy. 
In regard to exam schools, the uncertainty is greater than in the case of no exam schools, and 
even greater when the preferences are random in addition to exam schools.
	 Secondly, we are interested in how the mixed nature of the market – exam schools which 
are always preferred to regular neighbourhood schools – affect good strategies. We see that 
in the case of random preferences for high α, it is still often optimal to only report a single 
school. For medium α, the best strategy is to report 2 or 3, and only with low α (i.e. marginal 
utility is almost constant) is it best to randomly select the number of schools. If we assume 
that parents do not have a preference between the top three exam schools, they report the 
maximum number of preferences. 

Figure 7: Reported Preference by Strategy Length

Source: Authors’ calculation
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of exam schools and spatial preferences with high α, it would be better to report something 
from the higher and lower ends of exam schools, skipping the middle. Reporting schools lower 
on the preferences lists probably indicates that those agents would be otherwise unassigned, 
due to high demand, so they gain at least some utility. For medium α, the first three preferences 
are almost equally good. For indifferent agents, α ≈ 0.0, it would be best to randomly pick some 
schools from the list of regular schools. Also for agents with α = 0.1, it would be beneficial to 
specify their most preferred exam school and most preferred regular school.
	 In Figure 7 the preferences are reported with different strategy lengths. The results show 
that it is always best to at least report one’s most preferred school, as one might get lucky. If 
reporting more schools, it is useful to add the second most preferred school or with a small 
probability select something from even lower on the preference list. However, when reporting 
three choices, the selection of schools depends on the state of the school market. When 
preferences on the market in general are random with 50% probability, the first two 
preferences should be reported and the remaining options uniformly from the remainder of 
the preferences. In the case of spatially correlated lists or exam schools, the most preferred 
school should be almost always given. And when preferences are generally spatial, select the 
remaining options randomly. On the other hand, with exam schools and uncorrelated 
preferences when it is best to report three schools, it is usually best to report the top three.

4.2. Social Welfare

Previously we investigated the individual behaviour of agents, but now we consider how 
these behaviours influence the outcome for the entire society. For this, we compare the 
results of the Tallinn mechanism to the widely used Deferred-Acceptance (DA) mechanism 
(Gale and Shapley, 1962; Abdulkadiroğlu and Sönmez, 2003) as described in Section 2.3. 
Similar to the Tallinn mechanism, the priorities in the Deferred-Acceptance mechanism are 
also only based on distance.

Figure 8:  Unassigned Agents

Source: Authors’ calculation
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We look at two measures of social welfare. First, the proportion of unassigned agents (Figure 
8) and second the mean utility in the allocation (Figure 9). Usually, the measure used in 
matching problems are the allocated preferences, but this is mostly due to not having access 
to the utility. Since in our experiments, we know the agent’s utility, we measure the mean 
utility over all the agents.
	 Figure 8 illustrates assignment probability based on the agents’ α. We see that by using 
the DA mechanism and assuming random preferences (c = 0.0) and no exam schools (me = 
0), there are no unassigned agents. When preferences are spatially correlated (c = 1.0), we can 
see that about 10% of students are unassigned, and this probability does not depend on agent 
type.

Figure 9: Mean Utility Comparison: Deferred-Acceptance and Tallinn Mechanism

Source: Authors’ calculation
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provide the option to maximise an agent’s expected utility at the risk of being unassigned or 
assigned to a low ranked preference. Yet, as a result, a large number of agents are unassigned 
in the Tallinn mechanism.
	 We observe that agents with α = 0.999 would maximise their expected utility by only 
reporting their first preference (Figure 5 and 6). This is due to the high utility value of their 
first preference, but because only a few preferences are reported, there is also a large 
probability of being unassigned under the Tallinn mechanism (Figure 8).
	 When agents are not particularly concerned with the school they are allocated to (α is 
small), the best strategy is to report randomly (see Figure 6). This also guarantees that students 
will not be unassigned, which is demonstrated in Figure 8. Other agents trade the probability 
of being unassigned with being assigned to a more preferred school. We see that for agents who 
have α ≥ 0.3, there is a high probability of being unassigned. However, there must be a 
considerable number of agents who are assigned to their top preferences on the condition of 
there being no exam schools, which increases the average utility from the allocation.

5. Conclusion and Discussion

Our aim was to contribute to the mechanism design literature about school choice by adding 
a description of the Tallinn mechanism, which is a centralised school-selecting assignment 
based on the student’s distance from the school. Moreover, we wanted to indicate what the 
manipulative behaviour of agents is under such a mechanism; that is, how many preferences 
they report and how truthful their preference revelation is.
	 We used computational experiments to show the near-optimal strategies of the agents. For 
optimisation, we used a simple genetic algorithm, which outperformed the alternatives. Our 
model setup was the following: 50 schools (10 exam schools), 60 seats in each school and 3,000 
agents. The agents (families) were heterogeneous, but their spatial preferences could have been 
correlated. Therefore, our emphasis in comparative static analysis has been on three parameters 
– the shape of the utility function of the agents, the number of exam schools and the correlation 
in the preferences of the agents. The first parameter space (α) illustrates the decreasing utility 
over alternatives and makes it possible to study cardinal preferences. The second parameter 
makes it possible to study case specificity – exam schools are popular schools at the centre of 
the city that are preferred by most families due to public information from league tables or 
from their reputation according to “hot knowledge”. The third parameter makes it possible to 
indicate the effect of the homogeneity-heterogeneity of the agents. Homogeneity of agents can 
be interpreted as a post-Soviet tendency towards non-diversity of “good taste” – correlated 
preferences show that agents have similar preferences for schools. However, we used spatial 
preferences and we always put exam schools at the top of the list. This action is justified by 
empirical evidence (Põder and Lauri, 2014).
	 Our results show that in many circumstances under the Tallinn mechanism it is often 
best to report only one school, even if there is an option to report multiple schools. It is rarely 
beneficial to report three options (the maximum number). Nevertheless, it would benefit 
agents to report a school from the top of their preference lists. When reporting three schools, 
it is not always best to report the top schools and it seems to be advantageous to select the 
third option uniformly randomly from the remaining preferences. For agents with near-
zero marginal utility, if they exist, it is best to report schools randomly. Additionally, the 
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Tallinn mechanism maximises the expected utility of the agents, if the agents learn what 
and how to report, but also runs a large risk of agents not being assigned to schools. The 
maximisation of expected utility seems similar to a similar phenomenon in the Boston 
mechanism (Abdulkadiroğlu et al., 2011) given that families know how to manipulate and 
might be a more general property of manipulable mechanisms.
	 Finally, we were interested in whether the Tallinn mechanism hurts families compared 
to a strategy-proof stable mechanism such as the Deferred-Acceptance mechanism. We saw 
that the number of unassigned students is much higher under the Tallinn mechanism. This 
can partially be interpreted as an inefficiency of behaviour due to the mechanism. However, 
there is no considerable mean welfare effect – agents optimise their utility maximising 
strategies under the Tallinn mechanism.
	 We see that we manage to find beneficial strategies under the Tallinn mechanism; 
however, due to the non-repetitive nature of the game, real-life learning can be relatively 
limited for most of the families. Nevertheless, as a stylised fact about the reporting of 
preferences indicated, agents learn not to report the maximum number of preferences, 
rather they limit their reported lists. In addition, in the case of exam schools, they tend to 
report schools from the top of the list, yet there remains a high probability of local regular 
schools also being reported. This could be the “learning effect” – the Tallinn mechanism 
prioritises neighbourhood kids by using the cardinal measure of distance.
	 In conclusion, it was demonstrated that post-Soviet school-proposing mechanisms use 
some properties of the central marketplace that are open to manipulation – such mechanisms 
force families to learn strategic behaviour by reporting non-truthful preferences. In this 
respect, the Tallinn mechanism is similar to the infamous Boston mechanism. Moreover, it 
was shown that both would result in a higher expected utility for the agents compared to the 
optimal, stable and strategy-proof Deferred-Acceptance mechanism, which might be the 
property of generally manipulable mechanisms.
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