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Abstract

Th is paper explores how structural properties of small fi rms’ networks emerge from the ways 

fi rms exchange knowledge. In particular we are interested in analysing if and under which 

conditions the need for knowledge exchange within a set of co-located small fi rms is able to 

generate a more or less stable structure of links among fi rms. We focus on a specifi c kind of 

small fi rms’ networks called Industrial Districts (IDs). One of the peculiar characteristics of IDs 

is fl exible specialization: small fi rms specialize in given phases of the production processes and 

join up production chains in a fl exible and dynamic way depending on market opportunities. 

Consequently, knowledge exchange is mainly related to the matching of complementary know-

how and competencies. To explore the relationship between the exchange of complementary 

knowledge assets and network structure we developed a computational model of an ID. Th e 

results obtained through computer simulations of the model show that the exchange of 

complementary knowledge assets is able to generate stable networks and that, even with diff erent 

conditions, such networks evolve toward a hub and spoke confi guration with a few fi rms 

becoming key actors in the network.
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1. Industrial Districts as Complex Inter-organizational Networks

Th e notion of an Industrial District (ID) was introduced by Alfred Marshall in 1919; he identifi ed 

within the concept of external economies a crucial factor of competitiveness for local systems of 

specialized small and medium sized enterprises. Becattini (1979) identifi ed the ID as an 

elementary and autonomous unit of analysis. In the relevant literature fl ourishing in the ‘70s 

and ‘80s (Aydalot 1986; Becattini 1989; Brusco 1982; Camagni 1989; Rullani 1992) IDs are 

characterized by two central properties:

• ID’s structure is based on a dense and strong network of relationships among autonomous 

and heterogeneous actors (fi rms, families, local institutions);

• ID’s competitiveness is the result of the co-evolution of district’s productive organization 

and local formal and informal institutions.

 Piore and Sabel (1984) emphasized that the ID model is an example of a production model 

characterized by fl exible specialization and by the capability to compete with large integrated 

enterprises. Th is approach focuses on transactions related to productive interdependence of 

district’s fi rms rather than on ID’s informal coordination mechanisms such as values and 

culture. However, the transactional approach (Coase 1937; Williamson 1975) has shown to be 

inadequate to explain the complex nature of the embedded inter-organization and social 

processes characterizing small fi rms’ clusters (Uzzi 1996). Instead ID’s development is based on 

a strong relation between production and social systems, spontaneous and informal transactions, 

sharing norms, frameworks of references, cultural rules, reciprocity and trust. In order to study 

the structure, the nature and the dynamics of relations that evolve inside IDs, it is necessary to 

design a more appropriate theoretical approach that enables to take into account the importance 

of institutional factors (norms, values, culture, routines).

 Th e social network perspective, though acknowledging the relevance of transaction 

economics, emphasizes the cultural and institutional basis of inter-fi rms’ relationships 

(Granovetter 1985; Powell 1991). According to this perspective, the ID is framed as a social 

network including fi rms, the latter are embedded in a social context and they strictly infl uence 

their business performances and their behaviour (Inkpen and Tsang 2005). A key characteristic 

of social-organizational networks is the privileged access to knowledge resources for members 

of the network (Podolny and Page 1998); specifi c and rare knowledge resources are created 

thanks to the strong capability of network’s actors to exchange and combine knowledge assets. 

 Both traditional quantitative methodologies and social network analysis have been employed 

to fi nd determinants of knowledge exchange in small fi rms’ clusters and in IDs. However, 

traditional social science methodologies are unable to explain the dynamic emergence of 

knowledge-based networks in small fi rms’ clusters and of their structural properties from the 

analysis of the bottom-up interactions of multiple co-located fi rms. In particular, while research 

on networks has, widely explored how networks’ structural properties infl uence knowledge fl ow 

in clusters (Cowan and Jonard 2004), there is a lack of studies about how and if knowledge 

exchange can dynamically originate a stable network confi guration. Th e main research questions 

we aim to answer in this paper are the following:

1) Can local knowledge exchange give rise to a stable network? More specifi cally, is knowledge 

complementariness, a recurring characteristic in partnerships in IDs, a suffi  cient reason to 

explain the emergence of a stable network?

2) Which are the structural properties of knowledge networks generated by the exchange of 

complementary knowledge assets?
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 In the next section we provide a review of previous works about knowledge fl ows in 

Industrial Networks. Th en we present a computational agent-based model of an ID in which 

heterogeneous and autonomous agents trade complementary knowledge assets and build 

network relationships. Finally, results of several computer simulations to answer the above 

research questions are presented. In conclusion, limitations and potential of the computational 

approach to the analysis of small fi rms’ clusters as well as implications for research and policy 

making are discussed.

2. Knowledge Flows in Firms Networks

Firms’ networks are locus for innovation and knowledge creation (Podolny and Page 2000). 

Firms’ networks involve “a selected, persistent, and structured set of autonomous fi rms engaged 

in creating products or services based on implicit and open-ended contracts to adapt to 

environmental contingencies and to coordinate and safeguard exchanges” (Jones et al. 1997).

 A fi rms’ network is made by a collection of (oft en small) autonomous actors that pursue 

repeated and enduring reciprocal exchanges aimed at creating products or services for fi nal 

markets. Th e term “structured” in the defi nition proposed by Jones et al. (1997) means that 

exchanges among fi rms are not random but refl ect specifi c coordinated patterns and shared 

rules for labour division. Repeated, enduring and structured relationships are the main rationale 

behind the capability of networks to spread and diff use knowledge among their members. 

Relationships taking place in small fi rms’ networks are characterized by “embeddedness” (Uzzi 

1996). Embeddedness means that social relations aff ect and shape the economic and productive 

behaviour of network members; thanks to embeddedness, actors in a network can safeguard 

their exchanges using implicit and incomplete contracts (Jones et al. 1997). Th e social 

embeddedness of ties among fi rms in a network fosters information transfer and the creation of 

novel knowledge through trust and reciprocity (Podolny and Page 2000), but can increase the 

network inertia in regards to innovation and change.

 Networks can be also seen as structure providing specifi c patterns of interactions facilitating 

transfer, diff usion and creation of knowledge. According to Kogut (2000), a network is itself 

“knowledge” because it is guided by stable and enduring principles of organization.

 From a social network theory perspective, research on networks has widely explored the 

problem of how structural properties of the (such as density, position of specifi c nodes, pesence 

of hubs or of structural holes, presence of cliques, strength of ties) aff ect the effi  ciency and 

effi  cacy of knowledge exchange as well as learning performance of individual fi rms and of the 

network as a whole (Dhanaraj and Parkhe 2006; Cowan and Jonard 2004; Inkpen and Tsang 

2005; Podolny and Page 2000; Tsai 2001; Uzzi 1996). By exploiting the concept of scale-free 

networks developed by Watts and Strogatz (1998), Cowan and Jonard (2004) developed a 

computational model to analyze the relationship between network architecture and knowledge 

diff usion performance and, specifi cally, how network topology infl uences knowledge sharing 

performances. In this paper we start from Cowan and Jonard’s model, but following the opposite 

perspective: can local knowledge exchange give rise to a stable network? Is knowledge 

complementariness between fi rms a suffi  cient reason to explain the emergence of a stable 

network? Th ese questions are particularly relevant for IDs, in which the complementariness of 

knowledge assets between fi rms, through fl exible specialization, is a major economic explanation 

for ID emergence (Piore and Sable 1984).
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 In order to answer these questions in the following we introduce an agentbased model of ID. 

Agent based models have been largely employed for the analysis of Complex Adaptive Systems, 

i.e. systems characterized by intense local interaction among heterogeneous agents provided 

with bounded rationality, absence of central control, and continual adaptation (Arthur et al. 

1997). Th ese properties also characterize IDs, as shown by some studies on IDs, fi rms’ clusters 

and supply chains (Fioretti 2001; Boero and Squazzoni 2001; Strader et al. 1998; Pèli and 

Nooteboom 1997).

 According to the agent-based approach, a possible way of explaining the emergence of 

macroscopic regularities in social systems is to answer the following question (Epstein and 

Axtell 1996): “Is it possible to generate observed macro-regularities at the collective level from 

micro-specifi cations governing local and de-centralized interactions of autonomous and 

heterogeneous agents?” A possible way to answer this question is to simulate through a 

computer model the interaction of autonomous agents provided with bounded rationality 

within a virtual environment bearing both resources and constraints. In the following section 

we present an agent based model of a network of fi rms involved into trading of complementary 

knowledge.

3. A Computational Model of an Industrial District

Our model is similar to the one proposed by Cowan and Jonard (2004), but it diff ers for one 

fundamental reason: the Cowan and Jonard model assumes the topology of the network as a 

given and assess how structural properties aff ects information exchange into networks. We 

instead assume the opposite perspective: given certain kind of information exchange among 

agents, we want to discover if they are able to set up stable networks and which structural 

characteristics such networks show.

 Cowan and Jonard show that small world networks, i.e. networks in which a few hubs act as 

shortcuts between many spokes-agents, achieve the best performance in terms of network 

average knowledge level as well as satisfying results in terms of knowledge diff usion speed. Th e 

price to pay is inequality in knowledge distribution: a few agents in the network will become key 

players by accumulating disproportionately more knowledge than others (the so-called “rich 

gets richer” phenomenon).

 In our model the network topology is not assumed. Instead we allow a set of agents with 

complementary knowledge assets to trade with each other, while they also establish links among 

them as soon as a reciprocal exchange of complementary knowledge assets is possible. Our aim 

is to observe the network dynamics during repeated interactions and check if and under which 

conditions a stable network emerges. As for any Agent Based model, the simulation has two 

aims: 1) to explain the occurrence of aggregate regularities on the base of assumptions about 

individual fi rms’ behaviours; 2) to observe the emergence of possible unexpected consequences.

 In the following sections we describe the main modelling decisions and the components of 

the model.

Time & Space

Simulation time is given by an internal clock defi ning simulation cycles during which the agents 

interact. Th e model can be run through several iterations until either equilibrium is achieved or 

a certain state is reached, depending on the objectives of the simulation.
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 Firms are represented through a set of agents characterized in terms of behavioural rules. 

Th e model has been implemented using NetLogo® soft ware, freely downloadable social 

simulation soft ware developed by Northwestern University. Th e model is available and can be 

run on-line at the following web-site http://ccl.northwestern.edu/netlogo/community/models/

cluster. In the NetLogo graphical interface the agents are arranged into a circle where diff erent 

colours represent certain types of agents (Figure 1).

Figure 1. Graphical Representation of the Cluster through NetLogo Interface

Source: Authors’ illustration, NetLogo

 A major simplifi cation in the model is that the network is a closed system in which external 

fi rms cannot enter. Th ough this represents a limitation of the model, in stable phases of their 

existence IDs can be assumed as closed systems because of a low rate of entrants and a high level 

of embeddedness of existing links.

Agents

Agents in our model represent cluster’s fi rms. To agent j-th is associated a vector of knowledge 

assets:

Kj = [c
j1
, c

j2
 ,…, c

jn
]

where each dimension c
ji
 represents the knowledge level achieved by the fi rm j-th in the i-th 

asset. Knowledge levels are measured through real positive numbers in the interval [0,100]. In 

our model we set n=3. Consequently, fi rms can belong to one out of three classes, depending on 

their specialization in one of the assets. In our model there are 90 fi rms of which 30 are fi nal 

fi rms (yellow circles) specialized in c1, 40 are direct suppliers fi rms specialized in c
2
 (green 

circles), and 20 are second level suppliers (blue circles) specialized in c
3
. Th ese proportions 

roughly refl ect the fi rm’s distributions in real IDs characterized by fl exible specialization.

 At the beginning of the simulation each fi rm is assigned a random value in the interval [20, 

100] for the knowledge asset the fi rm is specialized in and the value 10 for the other two assets. 

Consequently, the knowledge vectors have been assigned as follows:

• Yellow fi rms → K = [c
1
, c

2
, c

3
] = [20 + random 80, 10, 10]

• Green fi rms → K = [c
1
, c

2
, c

3
] = [10, 20 + random 80, 10]

• Blue fi rms → K = [c
1
, c

2
, c

3
] = [10, 10, 20 + random 80]
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 Each agent is also assigned a certain value of absorptive capacity (AC). Cohen and Levinthal 

(1989) assume that knowledge spillovers from one fi rm to another can happen to the extent to 

which a fi rm can interiorize and appropriate knowledge. Th is ability ultimately depends on the 

fi rm’s absorptive capacity. AC is a function of the knowledge a fi rm already possesses and is 

ultimately infl uenced by factors such as the amount of R&D activities and investments in 

knowledge assets and human capital. Morrison (2005) points out the path dependency of AC: as 

companies increase their knowledge stocks they also are more and more aware of their knowledge 

needs and able to fi nd and connect with relevant external sources of knowledge. In other words, 

AC involves both internal and external learning. Since AC is a function of existing specifi c 

knowledge we associate to each fi rm a three-dimensional vector A-C = [a-c1, a-c2, a-c3], whose 

elements, assuming values are in [0,1], represent the AC associated to the i-th knowledge asset. 

A simple way to model the dependency of a-ci from existing knowledge is to assume a direct 

proportionality in the following way: a-c1 = c1 / 100, a-c2 = c2 / 100, a-c3 = c3 / 100.

 At the beginning of the simulation each agent is given a certain knowledge level depending 

on its specialization and, consequently, a certain a-ci. During the simulation, knowledge levels 

can increase or decrease under the infl uence of learning and obsolescence. In the model learning 

happens in two possible ways: internal and external. Internal learning is directly infl uenced by 

R&D activities or experience (learning by doing) while external learning is due to interactions 

with external knowledge sources, i.e. other fi rms in the model (learning by interacting).

 Firms are allowed a maximum number of outgoing links L. Th is is a reasonable assumption 

since interaction involves transaction costs; in particular, small fi rms can manage only a limited 

number of partners at the same time, though they can build relations with many partners during 

their lifetime. By limiting the number of simultaneous partners we also force fi rms to choose 

among possible partnership alternatives.

Network Construction

Figure 2 reports a fl ow chart describing how fi rms make decisions about building or breaking 

links in the cluster. All fi rms contribute to the creation of links among them through the 

following steps:

1. Internal learning: each fi rm increases the value of the knowledge it is specialized in of an 

amount equal to its AC in that knowledge. Consequently at time t+1 fi rms knowledge evolves 

in the following way:

   Final fi rms (yellow)  →  c1(t + 1)= c1(t) + a-c1

       c2(t + 1)= c2(t)

       c3(t + 1)= c3(t)

   Direct suppliers (green)  →  c1(t + 1)= c1(t)

       c2(t + 1)= c2(t) + a-c2

       c3(t + 1)= c3(t)

   2nd level suppliers (blue)  →  c1(t + 1)= c1(t)

       c2(t + 1)= c2(t)

       c3(t + 1)= c3(t) + a-c3
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Figure 2. Network Building Flow Chart

Source: Authors’ illustration

2. Check links: each fi rm checks for the number N of active links. If N=0 the fi rm starts 

looking for a partner by picking another fi rm at random. If complementariness between 

knowledge assets exists, the two fi rms establish a link. If N>0 the fi rm checks for 

complementariness among the existing partners and will either confi rm or break existing 

links. Th e process stops when the number of links achieves the maximum allowed value L. 

It is important to remark that L is a limitation only for the outgoing links, thus the overall 

number of links for a fi rm can be higher than L if there are enough incoming links from 

other partners.

3. External learning. External learning takes place through the same mechanism proposed by 

Cowan and Jonard, i.e. through knowledge reciprocal transfer from two fi rms having 

complementary knowledge assets, as in a bartering system. Th e knowledge gain is determined 

in the following way:

gain = a-ci*(-0.04*Δ2 + 0.4*Δ) if Δ < 100, 0 otherwise

 where Δ is the absolute value of the knowledge gap for ci. Th is quadratic function models the 

nonlinearity of the learning growth. It has a maximum when Δ = 50 and drops to zero when 
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Δ = 100, since no barter can happen if the knowledge gap is too high. Finally, the amount of 

bartered knowledge is limited by the absorptive capacity a-ci.

 Let’s consider the following example. Given two fi rms A and B such that A dominates over 

B with respect to c1 and B dominates over A with respect to c2. Aft er the exchange fi rm A 

will increase c2 by an amount equal to:

(a-c2)*((-0.004*(c2-of B - c2-of A)2) + (0.4*(c2-of B - c2-of A)))

 while fi rm B will increase c1 in the following way:

(a-c1)*((-0.004*(c1-of A - c1-of B)2) + (0.4 *(c1-of A - c1-of B)))

Obsolescence

In order to balance the learning eff ect that would imply a continuous growth of knowledge 

levels in each iteration, an “unlearning eff ect” has been introduced. Knowledge levels are 

decreased in each iteration of an amount equal to the obsolescence rate. Th is is modelled through 

a parameter obs ranging form 0 to 1 and assumed to be a constant. So knowledge levels will 

decrease with a constant pace aft er each cycle and fi rms who are not able to counterbalance this 

eff ect through learning will terminate.

4. Results

Th e model simulation was run with the initial conditions specifi ed above. To measure the 

behaviour of the system the following variables have been observed:

•  N, number of surviving fi rms;

•  Firm knowledge-level, level of knowledge achieved by a single fi rm computed as the 

arithmetic mean of the 3 knowledge levels K = (c1 + c2 + c3)/3;

• Network average-knowledge, computed as the mean value achieved by all fi rms in the 

cluster;

•  Variance-knowledge: variance of the knowledge levels within the cluster;

•  A-C, average value of the absorptive capacities of the fi rms in the cluster (the absorptive 

capacity of a fi rm is computed as the arithmetic mean of the a-ci). 

 To evaluate the structural properties of the emerging networks we used the following 

variables:

•  Degree-distribution: statistical distribution of the number of links per agent.

•  Network-density: relational density of the network represented as cliquishness (ratio between 

existing relationships and the number of all possible elationships D = 2l/(n*(n - 1)), where l 

is the number of existing links and n is the number of nodes in the network.

•  Network Clustering-coeffi  cient: average value of the clustering coeffi  cients of each node. For 

the node Cj the clustering coeffi  cient is given by Cj=2Ej/(kj (kj- 1)) where kj is the number of 

possible edges connecting Cj with its neighbours and Ej is the number of existing edges with 

the neighbours.

 In each simulation and for diff erent values of the obsolescence rate the model achieved a 

stable performance in terms of Network average knowledge, though with a slower pace in the 

high obsolescence situation (Figure 3, top).
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Figure 3. Average knowledge level and knowledge variance achieved by the system with low and high ob-

solescence rate (respectively obs=0.1 left and obs=0.9 right)

Source: Authors’ illustration

 Th is result can be interpreted in terms of the cluster ability to eff ectively react to changes and 

achieve satisfying performances. While in the high obsolescence case a signifi cant drop in 

performance was expected, the system was actually able to recover the same knowledge level, 

though it needed a longer recovery time and with less survived fi rms. Th is fl exibility is a typical 

characteristic of IDs, especially when fi rms experience diffi  culties to innovate or rethink their 

market position; many IDs success stories show that in these situations IDs go through a 

selection process arter which a few fi rms survive and remain competitive.

 Th e bottom of Figure 3 shows another interesting result: the variance of fi rms knowledge 

levels drops to very low values when obsolescence is low while it is higher when the obsolescence 

is moderate or high. In the low-obsolescence case knowledge becomes a commodity and all 

fi rms achieve the same level of knowledge like in perfect competition markets. In the moderate/

high obsolescence case, instead, the system is able to preserve a certain level of internal diversity 

like in monopolistic competition markets. Finally, when the obsolescence rate is near to 1, only 

few similar fi rms are able to survive and the knowledge variance is again low, lie in an 

oligopoly.

 Th e simulation produced interesting results with respect to the structural properties of the 

networks emerging from knowledge exchange between fi rms. With reference to our fi rst 

research question (Is knowledge complementariness a suffi  cient reason to explain the emerging 

of a stable network?) the answer is affi  rmative. In all simulations we observed the emergence of 

a stable network of exchange (fi g. 4, left ). Th e fi nal network confi guration was achieved by the 

system in a two stage process: in the fi rst stage, roughly corresponding to the ascending part of 
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the network knowledge curve in fi g.3 the fi rms in the cluster were busy in rewiring their 

connections in the attempt to fi nd the best partners among the available ones. In the second 

stage, instead, fi rms consolidated and stabilized their links and as the whole Network evolved 

toward the equilibrium.

 To answer to our second research question (Which are the structural properties of knowledge 

networks generated by complementary knowledge assets?), we plotted the statistical distribution 

of the number of links per agent, like in Figure 4 and 5.

Figure 4. Statistical distribution oflinks per agent (random network, normal distribution)

Source: Authors’ illustration, NetLog

Figure 5. Statistical distribution of links per agent (scale free network, power law distribution)

Source: Authors’ illustration, NetLog

 For any value of the obsolescence rate, in the fi rst phase of the simulation the network 

assumed a random structure with a normal distribution of links, but eventually always evolved 

at the equilibrium into a hub and spoke network topology, characterized by a few agents (hubs) 

that are largely more connected than others (spokes). Th e link distribution in hub and spoke 

networks, also known as small world or scale free networks, follows a power law curve.

 Which are the characteristics of the hub-fi rms? Interestingly enough, the hub fi rms achieved 

intermediate knowledge performances compared to the overall network when the obsolescence 

was moderate to high (high knowledge variance). In this case they acted as brokers connecting 

high and low performance fi rms. Instead, they achieved the top knowledge performances in the 

opposite cases of low or very high obsolescence.
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 How certain fi rms become hubs? By observing the evolution of the Network nodes that 

eventually became hubs, we noticed that the fi rms having the highest number of links at the 

beginning of the simulation had the highest chance to become hubs at the equilibrium. Th is 

behaviour is due to a typical mechanism of scale-free networks known as preferential attachment 

(Barabasi, 2002), according to which nodes that are more connected are more attractive than 

less connected ones. Th e implication for fi rms clusters is that those fi rms with higher relational 

capital have a greater chance to become leading fi rms in the cluster.

5. Conclusions

In this paper we use agent-based modelling to represent and analyze the behaviour of clusters of 

fi rms. Previous research works on fi rms’ networks can be roughly classifi ed in two major 

streams: studies in the fi rst stream assume the network as a given and concerned with the 

measuring of network properties and performances; works in the second stream use traditional 

statistical methods to fi nd out the determinants of the network. Our objective instead was to 

explore the process through which networks are built and emerge from interactions among 

heterogeneous and autonomous agents. In particular we focused our attention to knowledge 

exchange in the assumption of complementariness between fi rms’ knowledge assets, as it 

happens in Industrial Districts whose coordinating mechanism is based on fl exible specialization. 

Our next research step is to test, for the proposed model, the ability to predict network structure 

of real IDs.

 Th e possibility to observe the processes through which social aggregates are formed, 

represents a major advantage of agent-based modelling over traditional methodologies in social 

sciences. Like narrative or qualitative methods, agent-based models can be used to provide 

causal accounts of collective phenomena, but additionally they off er the rigour and the objectivity 

of traditional quantitative methodologies. A second advantage of agent-based modelling is that 

it provides researchers with a virtual lab where generative experiments can be performed to test 

if specifi c assumptions about individual agents behaviour are suffi  cient conditions to generate 

the expected emergence of aggregate regularities.

 Th e suffi  ciency of explanation is a major limitation of this methodological approach. A 

second major limitation of agent-based models is that they can implement extremely simplifi ed 

representation of the reality they intend to model. However, it is important to stress that the use 

of agent-based models for predictions or simulation of a real systems’ behaviour can hardly be 

successful when the complexity of the systems is too high to be captured by analytic yet tractable 

representations. Agent-based modelling is instead to be used for purposes that go beyond the 

“representational” trap, namely for theory testing and building purposes. Being extremely 

reductionist, this approach can help researchers to refl ect on and fi nd out the critical relevant 

variables in the elaboration of a theory. Computationally, agent-based modelling can be used to 

see theories in action, e.g. to observe incoherence or unexpected consequences of a theory. 

Finally, as with any theory, a computationally generated theory can be evaluated on the basis of 

traditional epistemic criteria such as its explanatory power.

 In agent-based models there is considerable value added in the same process of model 

construction since computation enhances the traditional learning process through which 

researchers learn from their errors, through early, “quick and dirty” implementation and simulation 

of models.



16

IANDOLI • MARCHIONE • PONSIGLIONE • ZOLLO    
REB 2009 

vol.1 (27), no 1

 Th ere are several warnings. First there is a risk of developing tautological models, i.e. models 

containing argumentative loops in which at least some of the hypotheses to be tested may be 

actually hidden assumptions. Second, the representational trap can induce the building of very 

complex models characterized by too many parameters whose robustness and relevance is hard 

to assess.

 Th e results produced by agent-based modelling can be used to construct hypothesis to be 

tested through traditional empirical investigation. In the ID’s case, for instance, one can 

investigate in more depth the characteristics and properties of hub fi rms or about how absorptive 

capacity is infl uenced by structural properties of the network.

 Agent-based models can have interesting implications for managers and policy making. 

Again, their power is not in simulating reality to make predictions, but to help managers and 

policy-makers to observe the coherence of certain choices, their potential unexpected 

consequences as well as to fi nd creative ways to deal with specifi c problems thanks to a deeper 

understanding of them. For instance, the results produced by the model presented in this paper 

show that in scale free networks it makes much more sense to develop selective policies to 

support and develop hubs or favour the emergence of brokers rather than promote undiff erentiated 

interventions on the whole cluster population.
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